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SynthLens: Visual Analytics for Facilitating
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Abstract—Designing synthetic routes for novel molecules is
pivotal in various fields like medicine and chemistry. In this
process, researchers need to explore a set of synthetic reac-
tions to transform starting molecules into intermediates step
by step until the target novel molecule is obtained. However,
designing synthetic routes presents challenges for researchers.
First, researchers need to make decisions among numerous
possible synthetic reactions at each step, considering various
criteria (e.g., yield, experimental duration, and the count of
experimental steps) to construct the synthetic route. Second, they
must consider the potential impact of one choice at each step
on the overall synthetic route. To address these challenges, we
proposed SynthLens, a visual analytics system to facilitate the
iterative construction of synthetic routes by exploring multiple
possibilities for synthetic reactions at each step of construction.
Specifically, we have introduced a tree-form visualization in
SynthLens to compare and evaluate all the explored routes at var-
ious exploration steps, considering both the exploration step and
multiple criteria. Our system empowers researchers to consider
their construction process comprehensively, guiding them toward
promising exploration directions to complete the synthetic route.
We validated the usability and effectiveness of SynthLens through
a quantitative evaluation and expert interviews, highlighting its
role in facilitating the design process of synthetic routes. Finally,
we discussed the insights of SynthLens to inspire other multi-
criteria decision-making scenarios with visual analytics.

Index Terms—Visual Analytics, Multi-criteria Decision Mak-
ing, Synthetic Route Design.

I. INTRODUCTION

The synthesis of novel molecules is crucial to many fields,
ranging from drug design to material science. For example,
in drug design, a crucial step in successfully synthesizing
safe and effective drugs is designing synthetic routes that can
produce complex molecules and directly impact the efficiency
and viability of the synthetic process. These routes enable
chemists not only to discover but also to produce novel
molecules of drugs. However, it is a challenging task to design
a feasible synthetic route, often taking over a decade and
costing upwards of US$100 million.

Currently, researchers typically use retrosynthesis [8], an
automated method that breaks down the target molecule into
starting molecules, to construct synthetic routes. However,
they often find these routes impractical and prefer to rely on
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reference papers. Therefore, they explore synthetic reactions
from reference papers to design synthetic routes transforming
starting molecules into intermediates step by step until obtain-
ing the target molecule. At each step of the designing process,
researchers must balance multiple criteria (e.g., yield, duration,
and experimental difficulty), which may conflict when select-
ing the optimal synthetic reaction. Such multi-criteria decision-
making task makes the synthetic route design process tedious
and time-consuming. Additionally, each decision can affect not
only current step’s outcome but also subsequent choices and
the overall synthetic route. For instance, choosing the former
between two possible reactions at the early step: a high-yield
but slower versus a low-yield but fast reaction may improve
yield but extend the overall duration, leading to increased costs
and delays. The decision may also restrict reagent options
in later steps due to intermediate stability. Additionally, the
reaction at this early step may limit the choice of reagents
in subsequent steps due to the stability of the intermediates
produced. The complexity is further heightened by the inclu-
sion of qualitative factors (e.g., experimental procedures) in
addition to quantifiable numerical values.

Several visualization tools can help users make multi-
criteria decisions. For example, FSLens [1] can assist users in
making decisions regarding the location of new fire stations by
considering factors such as distance and time. WarehouseVis
[2] aims to optimize and simplify the decision-making process
for warehouse location selection according to heterogeneous
data like renting costs, reachability, and traffic conditions. In
the context of designing synthetic routes, where a decision
sequence from the starting molecule to the target molecule
involves a series of synthetic reactions, each with multiple
experimental procedures, the complexity of the decision se-
quences requires a more comprehensive approach to ensure
a successful design. However, current tools cannot aid users
in decision-making among numerous possible choices at each
step while considering the influences on subsequent choices.
Additionally, they fail to provide users with a comprehensive
view of decision sequences. To address the mentioned chal-
lenges, we propose SynthLens, a visual analytics system that
assists researchers in designing synthetic routes by integrating
and comparing potential synthetic reactions effectively. Firstly,
SynthLens facilitates designing a synthetic route from the
starting molecule to the target molecule by integrating syn-
thetic reactions, whose information is extracted from papers.
Secondly, SynthLens helps users make a series of decisions
that is sequential decision-making by providing an overview
of the decision sequences in a comprehensive visualization.
Thirdly, SynthLens provides users with multiple choices at
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each step of constructing sequence decisions and allows them
to compare all decision sequences considering multiple factors.
Consequently, SynthLens enables users to make informed
decisions and identify the most promising decision sequences
for exploration.

In conclusion, the contributions of our work are:
• The system design requirements are summarized by co-

operating with six chemistry experts who are dedicated
to designing the synthetic routes of novel molecules.

• A visual analytics system that can help chemists make
sequential decisions considering subsequent impacts in
designing synthetic routes. To be specific, we introduced
a comprehensive visualization to compare and evaluate
each decision or all constructed sequences at various steps
of exploration, considering multiple criteria.

• Two case studies and expert interviews to validate the
effectiveness of our system. Specifically, we found the
workflow of SynthLens can be extended to multiple field
tasks such as retrosynthesis.

II. PROBLEM FORMULATION

To clarify the complex design challenge of constructing
synthetic routes, we have clearly defined several key terms
that are extracted from our comprehensive literature review in
the following content, which are illustrated in Fig.1.

• A synthetic route is a sequence of synthetic reactions
that can transform a starting molecule into a target
molecule [3]. We refer to the synthetic route that has not
yet successfully achieved the target as an intermediate
synthetic route.

• Starting molecules are the starting compounds in a
synthetic route [4]. Experts usually determine the starting
molecule based on their previous research experience.
Target molecules represent novel molecules that experts
endeavour to synthesize, given that these molecules are
hitherto unavailable and have not been synthesized pre-
viously [4].

• A synthetic reaction is a chemical process involving
bond cleavage and formation, by which two or more
molecules react to form a more complex molecule [4].

• The reactant of a synthetic reaction refers to the
molecule that acts as the starting material [5], which
undergoes a chemical change during the reaction, break-
ing existing chemical bonds and forming new ones to
generate the products [5].

• The main chain of a molecule is the basic skeleton and
serves as the basis of organic molecules [6]. Side chains
of a molecule refers to the components attached to the
main chain [7], mainly determining the properties of a
molecule.

• Retrosynthesis involves breaking down the structure of
a target molecule into simpler, more easily synthesizable
reactant, thereby completing the synthesis route [8].

Designing a synthetic route is the process of identifying
various synthetic reactions and integrating them sequentially,
with the goal of transforming the starting molecule into
intermediate products step by step until obtaining the desired

Fig. 1. A synthetic route from the starting molecule to the target molecule
consists of several synthetic reactions, each involving specific reactants and
products. The evaluation of a synthetic reaction contains criteria such as
duration and experimental procedure, while.

target molecule. To construct a synthetic route, experts need
to identify and assess various synthetic reactions from different
papers. Then, for each step of the design process, they may
filter multiple candidate reactions that have the potential to
make up the whole synthetic route. To assess these candidate
reactions, experts consider multiple criteria, including reaction
conditions, yield, reaction duration, and synthetic step
count. We will detail these criteria as follows.

• Reaction conditions are the various parameters that
control the progress of a chemical reaction, such as tem-
perature, pressure, solvent, and catalyst [9]. The difficulty
of the reaction conditions is directly reflected in the
complexity of carrying out the experimental procedures.

• Yield is a measure of the efficiency of one chemical
reaction, representing the ratio of the actual amount of
product obtained in an experiment to the theoretically
calculated amount [10]. Improving yield is a significant
objective as it directly impacts both the efficiency and
cost-effectiveness of the reaction.

• Reaction duration refers to the time a synthetic reaction
takes to complete [11]. Experts can optimize the reaction
duration to speed up the overall synthetic route, enabling
the fast production of the products and reducing the
required material.

• Synthetic step counts is the number of reaction steps
required to transform the starting molecule to the target
molecule. Shortening the synthetic route may decrease
the potential side reactions and impurities, leading to a
more effective synthesis.

III. RELATED WORK

A. Multi-step Synthetic Route Design

Computer-Aided Synthesis Planning (CASP) aims to assist
researchers in designing and optimizing multi-step synthetic
routes by using computer technology. The goal of CASP is
to automate the design of synthetic routes, reduce the trial-
and-error process, and increase the efficiency and success rate
of synthesis. Firstly, several studies on CASP can generate
a variety of synthetic routes using predictive models. For
example, WODCA [12] is a tool for forward synthetic and
retrosynthetic route prediction using the fundamental nature of
chemical bonding to guide suitable retrosynthetic breakpoints.
AiZynthFinder [13] is open-source software that uses an arti-
ficial neural network policy to quickly and efficiently perform
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retrosynthetic prediction, providing potential precursors for a
given molecule. Nevertheless, the accuracy of predicted routes
can sometimes fall short of expectations. Consequently, human
expertise should be integrated to improve the reliability and
precision of prediction. Some tools provide intuitive functions
for the hands-on construction and iterative optimization of syn-
thetic routes. ICSYNTH [14] utilizes reaction cores extracted
from various databases to construct synthetic suggestion trees
under user control. LinChemIn [15] is a Python toolkit that
enables chemo-informatics operations on synthetic routes and
reaction networks, allowing users to operate synthetic routes.
However, existing studies lack the interaction for users to
add synthetic reactions into their synthetic routes dynamically,
which aligns with the decision process of chemists. Further-
more, current tools face challenges in facilitating researchers
in choosing the most suitable synthetic routes from multiple
candidates by considering various criteria, such as yield,
duration, experimental procedures, and reaction conditions.

B. Visual Analytics for the Chemical Domain

Visual analysis has been widely employed in various fields
in the chemical domain, such as drug discovery [16], chemistry
education [17], and chemical reaction exploration [18]. Some
of these studies can facilitate the discovery of novel molecules
and identify relationships between different molecules. For
instance, DataWarrior [19] can assist users in visualizing and
analyzing chemical biology data and identifying correlations
and associations among various molecules. Navejaet al. [20]
presents the novel constellation plots to enable users to iden-
tify and interpret Structure-Activity Relationships (StARs).
ChemoGraph [21] allows users to explore novel molecules
in the form of hypergraphs. Furthermore, other studies can
support users in leveraging visual analysis technology to study
synthetic reactions or routes by enhancing the learning and
understanding of complex chemical processes. For example,
Chiu et al. [18] utilized enhanced visual units to help students
develop a deeper understanding of chemical reactions by
connecting and refining knowledge. Moreover, RetroLens [22]
can provide the retrosynthetic routes of a target molecule
and present candidate correction steps that AI recommends
to promote collaboration between humans and AI. However,
our work differs from all the prior studies in that the goal
of our work is to assist researchers in designing synthetic
routes based on numerous potential synthetic reactions, which
is a complex multi-step decision-making problem and requires
researchers to balance various criteria in the process.

C. Visual Analytics for Multi-criteria Decision-making

Common single-criteria decision-making tasks focus on
only one objective, such as optimizing costs or maximizing
benefits [23], while multi-criteria decision-making refers to
identifying a satisfactory choice from a range of options
evaluated against several criteria.

Furthermore, numerous multi-criteria decision-making sys-
tems have been proposed to cater to the unique requirements
of specific domains such as location selection [1], [2], [28] and

route planning [29]–[31]. Route planning is a typical multi-
criteria decision-making problem that involves evaluating and
prioritizing options based on multiple criteria [32]. Pathfinder
[29] is designed to facilitate users with interactive capabili-
ties for querying, ranking and comparing paths within large
and multivariate network datasets. Weng et al. [31] designed
BNVA that proposed a progressive route decision-making
strategy to evaluate the performance of bus routes. SkiVis [30]
enables users to receive customized route recommendations
based on preferences such as steepness and crowdedness. In
terms of location selection issues, WarehouseVis [2] combines
visual analytics and interactive modelling to optimize and
simplify the decision-making process for warehouse siting
in retail logistics management. SmartAdP [28] facilitates the
comparison of multiple billboard placement solutions by mul-
tiple attributes, such as traffic volume, speed, origins and des-
tinations. FSLens [1] integrates fire records and collaborative
decision-making technology to identify and improve the siting
of fire stations. There are also various studies targeting specific
multi-criteria decision-making approaches rather than particu-
lar applications or domains. WeightLifter [33] enhances multi-
criteria decision-making by enabling the exploration of weight
spaces for up to 10 criteria, improving the decision efficiency
and credibility. Huang et al. [34] proposed a visual analytics
framework to explore and compare the evolutionary processes
in evolutionary multi-criteria optimization algorithms.

However, in designing chemical synthetic routes, re-
searchers must consider a variety of quantitative factors (e.g.,
yield and reaction duration) and qualitative textual data in a
long, multi-stage decision sequence, which poses significant
challenges. Therefore, it is crucial to develop a new visual
analytics system to streamline the extensive decision-making
process involved in designing these routes.

IV. DESIGN STUDY

We collaborated with six experts (E1-E6) from the field of
organic chemistry, each with varying years of experience and
specialized in different research areas. We gained insights into
their workflows and challenges in designing routes for novel
molecules through semi-structured interviews, each lasting
around 60 minutes. Additionally, we held biweekly meetings
with experts to ensure our system aligned with their domain
needs, iteratively refine the system based on their immediate
feedback. This collaboration helped us identify the crucial
factors influencing their decision-making process and the five
key design requirements for our system.
R1 Specify the starting molecule and required synthe-

sis reaction. The experts need to specify the starting
molecule of the synthesis and search for potentially
expected synthetic reactions from papers based on their
expertise and knowledge. Therefore, our system should
provide a flexible input interface for this purpose.

R2 Examine the details of synthetic reaction. Experts need
to review numerous papers to find synthetic reactions that
fulfil their requirements at the step, such as experimental
procedures and specific products. For example, E5 has
emphasized, “Papers often include extensive details such
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as experimental procedures, flowcharts, molecule struc-
ture diagrams, and spectra diagrams, making it time-
consuming to identify useful reactions.” Therefore, it is
crucial to help experts effectively assess these details in
each paper and decide whether to integrate a particular
synthetic reaction into their synthetic route.

R3 Construct synthetic routes based on synthetic reac-
tions. Experts will construct synthetic routes step by
step through several identified synthetic reactions. Specif-
ically, they might explore multiple potential synthetic
reactions at each step. Therefore, our system should
support users in manually constructing synthetic routes.

R4 Support synthetic route comparison at various steps.
E6 has highlighted that experts frequently assess the
intermediate synthetic routes to choose the optimal one
for further exploration in the middle step of the designing
process. Furthermore, experts also need to compare all
completed routes to make the final decision. To facili-
tate this crucial comparison process, our system should
provide a flexible approach to support experts in com-
prehending multiple factors such as the synthetic step
count, yield, duration, and experimental step details at
any step. Besides, several experts have mentioned that
experts may prioritize differently for various synthetic
tasks. Therefore, our system should allow users to adjust
the weight of different criteria based on their specific
needs and preferences for ranking candidates.

R5 Optimize synthetic routes iteratively. Experts often
need to optimize the constructed synthetic routes to
achieve their desired criteria. Our system should support
iterative optimization by allowing experts to modify and
refine the synthetic routes based on their assessment and
analysis iteratively.

V. DATA PROCESSING

In this section, we first present the overview of our system,
followed by a detailed introduction to the paper access mod-
ules and the process of information extraction from papers.
Then, we propose the workflow of constructing the synthetic
route.

A. System Overview

We present SynthLens, a visual analytics system that assists
organic chemists in designing synthetic routes by integrating
synthetic reactions extracted from papers, enhancing the route
design process. The data process of implementing SynthLens
contains two modules: paper access and analysis, and informa-
tion extraction (Fig.2). SynthLens can retrieve papers using the
molecule that the users input as search terms. Then, SynthLens
analyzes and processes the retrieved papers to demonstrate
the distribution of these papers. In the information extrac-
tion module, we use an LLM-based information extraction
technique to extract information on synthetic reactions from
papers and transform them into structured data. As for front-
end visualization, SynthLens allows the users to compose these
reactions into synthetic routes and visualize these routes in
a tree-form visualization. SynthLens also provides views to

assist the users in exploring the decision sequences and making
decisions in the designing process.

B. Papers Access and Analysis

Users usually search for papers related to the reactants
of each synthetic reaction. The amount of papers retrieved
may be substantial, and each paper may propose multiple
synthetic reactions. Therefore, it can be challenging for users
to identify which paper is relevant to their requirements and
what sections in a paper contain useful information. To address
this, SynthLens needs to retrieve the papers using specific
molecules as search terms and extract details about specific
synthetic reaction from the chosen paper.

Requesting the user to enter the name of the starting
molecule is not advisable because the molecule’s name can
be complex and may not accurately correspond to the correct
molecular structure. As a result, SynthLens allows users to set
the starting molecule by drawing the structure of a molecule.
We have incorporated the open-source chemical structure edi-
tor Ketcher1 into our system to assist users in drawing molec-
ular structures. This editor can generate SMILES (Simplified
Molecular Input Line Entry System) strings of a molecule
once the user has drawn the molecular structure. SMILES
can convey the accurate molecule structure in a compact
and machine-readable format. We search papers using API
provided by PubMed [35], which accepts SMILES strings as
search terms. We can retrieve a list of relevant papers that
include information such as title, abstract, keywords, digital
object identifiers (DOI), and citation counts by this API.

As the users expect our system to categorize the retrieved
papers according to the distribution of their research content,
we transform the abstracts of the papers into vector embed-
dings to capture the semantic information of the text and
map semantically similar abstracts to proximity locations in
embedded space. To achieve this, we use the PubMedBERT
model [36], which is a pre-trained language model designed
for the biomedical domain, to convert the paper title and
abstracts into high-dimensional embeddings. Then we use the
t-SNE algorithm [37] to project high-dimensional embeddings
into two-dimension points in the 2D plane, providing a spatial
representation of papers. The positioning of points provides a
visual cue for the semantic similarities among papers, helping
users intuitively discover potential relationships that may not
be apparent in tables.

C. Information Extraction from Papers

After users choose a paper to read, they may encounter diffi-
culty in extracting a specific synthetic reaction. This is because
one paper may propose multiple synthetic reactions and each
synthetic reaction may contain various details. Therefore, our
system aims to automate the extraction process. To achieve
this, we first use the API provided by UnpayWall2 to obtain
a PDF file of the paper.

To extract synthetic reactions details from the paper, we
use Eunomia [38], a chemist AI agent. This tool adopts the

1https://github.com/epam/ketcher
2https://unpaywall.org/products/api
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commonly used workflow for information extraction using
LLMs [39]. Firstly, it converts both papers and queries into
text embedding, which are then stored within an embedding
database. It then conducts semantic similarity searches to find
the most relevant paragraphs. Furthermore, Eunomia employs
Chain-of-Verification [40] to reduce hallucinations in LLMs.
Base on this automatic extraction pipeline, we created the
prompt template in which A refers to the reactant of the
reaction ,i.e., the search term and B refers to the specific
expected synthetic reaction:

1) You are an expert chemist. This document describes
the synthetic route or synthetic reaction of the A.
2) Find the information of the specific reaction B and the
reactant of the reaction must be A.

Then, we asked Eunomia to provide the answer, includ-
ing the following items: reactants, products, solvent, reagent,
catalysts, duration, instruments, operation, and yield, and we
specified the output format:

Your final answer should be a structured JSON format in-
cluding these items: reactants, products, solvent, reagent,
catalysts, duration, instruments, operation, and yield. The
answer should be ”null” if you cannot find the expected
reaction.

We specified all the expected reactions as parameter B and
performed several extractions. One example of the extracted
information of a synthetic reaction is presented in Fig.4.

Although Eunomia claims that it is able to sace the agent’s
output in JSON format, we used the JSON module in Python
to parse the model’s output string in order to ensure that the
output format fully meets our needs. If parsing fails, we retry
by inserting a directive that asks the model to strictly adhere to
the prompt following the original prompt until the maximum
time of retrying is reached.

Additionally, we provide users with a key metric: Context
Relevancy [42] to help them evaluate the extracted informa-
tion. Context Relevancy Context Relevancy is an indicator used
to evaluate the performance of LLMs in retrieving information,
and it measures the relevancy between the content of the
answer and its context. Also, to avoid over-reliance on our
system, we added disclaimers in SynthLens to remind users
that there may be inaccuracy in the extracted information
because of technological limitations. Meanwhile, we provide
a link to each paper, allowing them to access papers online
directly to verify extracted synthetic details.

D. Synthetic Route Construction

While there are automatic methods for generating synthetic
routes like retrosynthesis [8], experts caution that the routes
automatic generated may not be feasible in practice due to
complexity and experimental challenges of these routes. In-
stead, they prefer designing synthetic routes based on informa-
tion from reference papers. Therefore, SynthLens is designed
to provide convenient access to valuable papers and directional
suggestions, which helps reduce errors that could arise from
full automation and construct synthetic routes. To facilitate the
construction process, we defined a tree-form data structure to
organize decision sequences consisting of synthetic reactions

Fig. 2. The analyzing workflow of SynthLens: User Input: a user can
define a starting molecule and expected synthetic reaction, then manually
select one from retrieved papers for exploration. Information Extraction: the
synthetic reaction details are then extracted automatically. Synthetic Route
Construction: the user can choose to integrate the synthetic reaction into the
synthetic route construction to form various decision sequences. Decision-
making: finally, the user can select the optimal synthetic route from computed
rankings supplemented by his own preferences. The whole process is the
combination of automatic methods and user interaction.

from the starting molecule to the target molecule, comprising
the following elements.

• The root of a tree represents the starting molecule of
the synthetic route that users specified. After setting the
starting molecule, SynthLens will automatically retrieve a
number of papers using the starting molecule as a search
term.

• A node in the tree represents a synthetic reaction ex-
tracted from retrieved papers, whose reactant is the prod-
uct of the parent node. Each node also contains essen-
tial information, including yield, duration, and SMILES
strings of the reactants and products. Upon choosing a
node, SynthLens will automatically retrieve papers using
the product of this node as the search term. The synthetic
reaction extracted from specific retrieved papers can be
integrated as subsequent nodes, i.e., child nodes. We
also recorded the nodes’ total yield and duration because
these values will accumulate as the reaction proceeds
sequentially. The output of one step serves as the input
for the next. To be specific, if the yield of the first step
is 80% and the yield of the second step is 90%, then the
second step yields 72% totally (i.e., 80%×90% = 72%).
Similarly, we obtain the total duration by calculating the
sum of the duration of this node and the parent node.

• A leaf node, typically representing the product molecule,
has no child nodes. Nodes that are neither root nor leaf are
called intermediate nodes, which represent intermediate
molecules. The node’s layer count refers to the number
of synthetic reactions from the root node(i.e., the start-
ing molecule) to the current node(i.e., the intermediate
molecule).

• Deep and bread exploration strategies. Deep explo-
ration strategy involves going as far down a branch
of the tree as possible before backtracking to explore
new branches, while bread exploration strategy involves
exploring all neighbour nodes at the present step before
moving on to nodes at the next level.
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Fig. 3. SynthLens: (A) The Control Panel allows users to specify the starting molecule and potentially expected synthetic reactions before designing the
synthetic routes. (B) The Paper Projection View presents the distribution of retrieved papers. (C) The Synthetic Reaction Detail shows the detail of extracted
synthetic reactions. (D) The Synthetic Route Overview presents a tree-form visualization of the decision sequences of the synthetic routes. (E) The Similarity
View shows the similarity in structure among specific molecules. (F) The Rank View visualizes the rank of decision sequences considering three factors with
flexible weights. (G) The Experimental Procedure Comparison assists users in comparing the experimental procedures of multiple synthetic reactions.

VI. VISUAL DESIGN

In this section, we detail the visual design of SynthLens,
which leverages a combination of manual inputs and auto-
mated processes to meet the design requirements specified in
Section IV. As Fig.3 shows, users can set a starting molecule
and input the expected synthetic reaction in the Control Panel
(R1). Then, they can manually select a paper in the Paper
Projection View, where the system has already performed
searches and computations. The experimental procedures for
the synthetic reactions are then automatically extracted and
presented in the Paper Detailed View (R2). After annotating
the difficulty of a synthetic reaction’s experimental procedure,
the user can integrate the reaction into the Synthetic Route
Overview and end up producing multiple decision sequences
(R3, R5). After route construction, the user can manually
choose the most appropriate decision sequence from the auto-
matically computed rankings in the Rank View (R4).

A. Paper Overview

To help users explore papers related to a synthetic reaction
and decide whether to integrate the reaction into the decision
sequence, we proposed the Paper Overview. This view consists
of two sub-views: the Paper Projection View and the Paper
Detail View. Specifically, the Paper Projection View provides
a comprehensive overview of retrieved papers with diverse
distribution of research content, while the Synthetic Reaction
Detail presents the details of a particular synthetic reaction
extracted from the corresponding paper.

1) Control Panel: The Control Panel (Fig.3(A)) allows
users to draw the structure of the starting molecule of the
whole synthetic route in the editor. Users can plan the synthetic
route by identifying the expected reactions to transform the
starting molecule into the target molecule based on their
differences and chemical domain knowledge. So, the Control
Panel allows users to input these expected reactions. This
assists the following process of extracting synthetic reactions.

2) Paper Projection View: The retrieved papers present a
diverse distribution in research content and include detailed
information like titles, abstracts, citation counts, keywords,
etc., making the exploration of a large number of papers a
challenging task. After interviewing experts, we learned they
usually rely on heuristic exploration methods to identify target
papers for further exploration. This approach allows users to
precisely determine the most relevant papers based on a deep
understanding of their contents. Therefore, we employ a scatter
plot in the Paper Projection View (Fig.3(B)), which helps users
find semantically similar papers through the scatter plot after
identifying one paper of interest based on their expertise. For
example, users are more likely to explore papers spatially
close to the selected paper in the scatter plot, rather than just
focusing on those ranking highest in the paper list.

Description. In the scatter plot of the Paper Projection View,
each point represents a retrieved paper, with the color intensity
indicating the paper’s relevance to the search term. Rather than
using point size to represent relevance, color intensity ensures
points remain visible even when the paper’s relevance to the
search term is low. In contrast, smaller points might become
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indistinguishable at a smaller scale. After interviewing experts,
we found that they prefer manually exploring papers. This
preference arises because automated filters can not capture
the semantic difference between papers and carry the risk of
omitting significant papers.

After transforming the abstract of these papers into embed-
dings and dimensionality reduction introduced in Section V,
we obtained the coordinates of each paper projected in the
2D plane. However, if these points are mapped directly by
coordinates, there will be an overlap among these points. To
reduce the overlapping of the points in the scatter plot, we
employed a force-directed algorithm provided by d3.js [41]
that applies a repulsive force to maintain at least a minimum
distance between points, without changing their relative po-
sitions. In addition, we added an arc surrounding each point
encoding the citation count of this paper, which can indicate
its credibility. Proximity in distance among points indicates a
similarity in research content. Users are willing to prioritize
papers that not only demonstrate a high degree of relevance
to the key molecule but also have high citation numbers.
Upon exploring a paper, subsequent exploring choices should
focus on papers that are near to ensure the consistency of
exploration. We display 100 papers in the Paper Projection
View because experts usually retrieve less than 100 relevant
papers when searching synthetic reactions. Showing too many
can overwhelm the analysis with unrelated papers. If the user
finds the points too dense, they can zoom in and drag to see
a clearer picture of the scatter’s positional relationships.

Interaction. Hovering over a point triggers a tooltip to
appear, presenting the details of the corresponding paper,
including title, abstract, DOI, citation number, and keywords.
These details can guide the users’ decision on whether to
explore a specific paper. When a point is clicked, SynthLens
will automatically extract the experimental procedures of the
expected synthetic reactions from the paper. In addition, we
provide a zoom-in button that, when clicked, opens a dialog
containing an enlarged scatter plot. In this dialog, we provide
two silders: one to adjust the count of displayed points and
another to modify the “perplexity” parameter in the t-SNE
algorithm, which controls whether the algorithm emphasizes
global patterns or local structures. We also include a tooltip
to inform users about this parameter.

3) Synthetic Reaction View: The Synthetic Reaction View
(Fig.3(C)) is designed to present the synthetic details extracted
from the chosen paper. We allow the users to assess the
experimental procedure in three aspects: the availability of
necessary raw materials and reagents, the complexity of the
experimental operations, and the difficulty in acquiring the
necessary laboratory equipment (Fig.3(C1)).

Description. We use RDKit.js3 to display the molecular
structures of the reactants and products (Fig.3(C2)) and present
the experimental procedure of the expected reactions the users
have specified extracted from the chosen paper in the form
of a table, including reactants, products, solvents, catalysts,
reagents, reaction time, instruments, operation, purification,
and yield. We provide links to these papers, allowing users

3https://www.rdkitjs.com/

Fig. 4. The extracted synthetic details are presented in a table format in our
system, consisting of several parts: raw materials, experimental operations,
duration, and yield, etc. Moreover, our system allow users to modify the
extracted details within a form.

to access them online with a single click. Meanwhile, we
provide a essential metric Context Relevancy [42] to aid users
in assessing the trustworthiness of the extracted information
(Fig.3(C3)). We provide a view similar to a bullet chart to
assist users in evaluating the effectiveness of information
extraction. In this view, the narrower, darker bar represents the
average Context Relevancy value of all extracted information
with the wider, lighter bar representing the quartile range. The
black vertical line indicates the value for this particular extrac-
tion result. If users find the extracted results unsatisfactory,
they have the flexibility to modify the results based on the
article’s content and expertise (Fig.4).

Interaction. By clicking the “Set Difficulty” button, we
allow the users to assess the experimental procedure in three
aspects: material, operation, and equipment. We categorize
these into three discrete tiers of difficulty: challenging, moder-
ate, and simple, with values 1 to 3 (Fig.3(C1)). By recording
the users’ annotation of difficulty levels in three aspects and
corresponding descriptive text, we utilize PubMedBERT to
compute similarity scores, thereby providing recommendations
for difficulties of experimental procedures that align with the
users’ predefined difficulty preference in subsequent annota-
tions. Then, the users can add the synthetic reaction to the
end of the currently explored sequence after clicking the “Add
into Route” button. Additionally, we allow users to manually
modify or add the extracted synthetic details after reviewing
the article content or practical experimental results.

B. Synthetic Route Construction View

To help users construct and intuitively view multiple syn-
thetic routes while making decisions based on various factors,
we propose the Synthetic Route Overview in combination
with the Rank View. Additionally, the Molecule Similarity
View assists users in selecting the most promising intermediate
molecules, guiding them away from less viable options during
exploration. The Experimental Procedure Comparison View
further support users in scrutinizing the synthetic information
to make more informed choices.

1) Synthetic Route Overview: The Synthetic Route View
(Fig.3(D)) proposes tree-form visualization to present decision
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sequences constituting synthetic routes, enabling users to
explore various options of synthetic reactions.

Description. In the synthetic route overview, the root rep-
resents the starting molecule of the whole synthetic route,
and each subsequent node glyph (Fig.5) represents a synthetic
reaction whose reactant is the product of the parent node. For
instance, the product of Reaction 16 serves as the reactant
of Reaction 27. The dual-toned bar on the upper side of
each node glyph (Fig.5(A) (B)) represents reaction duration,
with the lighter color representing the experimental duration
of the current reaction and the darker color representing the
cumulative total duration. The bar on the lower side (Fig.5(C)
(D)) indicates yield, with the darker bar representing the yield
of the reaction in the node and the lighter representing the
cumulative total yield traced from the root to the current
node. The donut glyph on the right side (Fig.5(E)) reflects the
degree of difficulty in the three aspects: material acquisition
(Fig.5(E1), obtaining and utilizing experimental instruments
(Fig.5(E2), and the complexity of the experimental operations
(Fig.5(E3). Nodes within the same decision sequence are
connected by lines, while nodes at the same layer are vertically
aligned.

Interaction. When a node is hovered on, a pop-up tooltip
(Fig.5(F)) shows the reaction ID, which consists of the number
of layers and the vertical ordering of the nodes, experiment
duration, yield, total yield, and the reactant and product of
the corresponding synthetic reaction.

Design alternatives. Fig.6 illustrates alternative designs of
the Synthetic Route Overview. The original design alternative
consists of two layers of arcs, the outer ones representing the
duration and yield, respectively, and the inner circle repre-
senting the difficulty of the experimental procedure. However,
the dual-layer arcs could be visually complex and potentially
overwhelming, making it difficult for users to discern the key
information quickly. Moreover, comparing multiple nodes for
yield or duration might not be intuitive, especially since these
nodes are of the same sizes and there are many nodes in the
view. Therefore, we proposed the current design (Fig.5), which
juxtaposes two bar charts while positioning a donut glyph
on the right of the node, thereby facilitating user comparison
across various nodes. Since the “difficulty of a synthetic reac-
tion” are driven from text describing experimental procedures,
it is challenging to quantify difficulties. So, we use a donut
glyph, with three segments and color intensity representing
three aspects of difficulties, which allows users to view the
overall difficulty of the synthetic route while primarily making
decisions based on duration and yield.

Exploration. Users usually adopt two kinds of exploration
strategies using the Synthetic Route Overview, i.e., deep or
bread exploration strategies. The deep exploration strategy
involves constructing a single decision sequence from the
starting molecule to the target molecule while the bread
exploration strategy considers various possibilities to integrate
multiple reactions. Moreover, users often encounter multiple
intermediates during the designing process, which may share
similar structures, and must identify the most promising one
for further exploration. To broaden the selection, users need
to combine the deep and the broad exploration strategies to

Fig. 5. The design of the node glyph that represents a synthetic reaction: (A)
and (B) respectively represent the duration and total duration accumulated
from the root to this node. (C) and (D) respectively represent the yield
and total yield. The donut glyph (E) presents the annotated experimental
procedures’ difficulty of this synthetic reaction. Specifically, (E1), (E2), and
(E3) correspond to the difficulty in acquiring reactants, obtaining and utilizing
experimental instrument, and the complexity of the experimental operations,
respectively. The tooltip (F) displays some details about this synthetic reaction.

Fig. 6. Design alternatives. The node glyph is designed to represent a synthetic
reaction, which consists of two layers of arcs.

construct additional decision sequences that reach the step of
producing similar intermediates.

2) Molecule Similarity View: We design the Molecule
Similarity View (Fig.3(F)) to help the users find potential
intermediate molecules to perform subsequent explorations to
obtain molecules that can be compared. The first part of this
view is the element left to each node glyph in the Synthetic
Route Overview, which refers to the Molecule Similarity Mark
(Fig.3(F1)). When the users click a node glyph, the color
of all the Molecule Similarity Mark encodes the similarity
between the product molecules of all other nodes in the tree
and the chosen node’s product molecule. The other part of
this view is the Molecule similarity Matrix (Fig.3(F2)) right
to the Synthetic Route Overview. Then, after the users choose
a node in the Synthetic Route Overview and click the “Add
into Comparison” button, an additional column is added to the
Molecule Similarity Matrix with a maximum number of five.
The color intensity of each element in this column represents
the molecular similarity between the product of this node and
the products of all decision sequences.

3) Rank View: The users are required to rank various
decision sequences represented by the routes from the root to
the leaf in a tree structure considering the flexible weighting
of multiple factors. Additionally, they need to observe each
factor and the weighted sum to make informed decisions.

Description. The horizontal coordinate of dot plots in the
Rank View (Fig.3(E2)) indicates the values of each factor,
including the number of steps, yield, and duration, which are
the three most important factors in the decision-making of
designing synthetic routes. The color and length of the bar on
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the right side of the view (Fig.3(E3)) refer to the weighted
total score for the three factors.

Initially, we presented the scores for three attributes using
bar charts. However, based on expert feedback, they felt
that presenting multiple bar charts together could lead to
visual overload. Therefore, considering the need for ranking,
visual simplicity, and quick task completion, we opt for dot
plots. Moreover, the human eye is not as sensitive in visual
perception to assessing length, i.e., the length of bars, as it is
to dots. We use bars with color intensity in the last column
to represent the weighted total score. Because the bar chart
uses multiple encodings, including the length of the bars, color
intensity, and position on the common scale, it can represent
the weighted total score while also allowing users to assess
the rankings of each row intuitively.

Interaction. We provide a sorting feature that allows rows
in the Rank View to be arranged based on their scores,
facilitating users in selecting the optimal synthetic routes.
When a user clicks on a row, the entire corresponding route in
the Synthetic Route Overview will be highlighted, facilitating
users’ review.

Legend. The legend of the Rank View presents the three
factors, where the ratio of the length of each arc to the cir-
cumference of the corresponding circle represents the weight
of each factor. The users can edit the weights by clicking the
button beside the legend (Fig.3(E1)).

4) Experimental Procedure Comparison View: Before final-
izing their decision on the specific synthetic route, the users
can examine and assess the experimental procedures of several
synthetic reactions(Fig.3(G)). By choosing a node within the
tree and clicking the “Add into Comparison” button, the users
can compare the experimental procedure with other nodes in
the form of a table. The examination facilitates the intuitive
assessment of the difficulties in the experimental procedure of
each synthetic reaction.

VII. CASE STUDY

We invited the interviewed experts to explore SynthLens re-
motely online and recorded their exploration process. Through
these case studies, we summarized their insights to demon-
strate the practical applications of our system.

A. Case Study 1: Synthesis of Linker

E4, who specializes in anti-tumor targeting drugs, has been
concentrating on Adcetris, a cancer treatment drug. He sought
to use SynthLens to design the synthetic route for Mc-Vak-Cit-
PABC-PNP, a linker of Adcetris. He stated that the primary
purpose of designing this synthetic route was to serve as a
reference for experimental procedures intended for trials, not
necessarily to actually produce the target molecules.

User Input (R1). According to the existing research results
and the actual laboratory situation, he chose the Fmoc-Val-
OSu as the starting molecule (Fig.3(D1)). He assigned initial
weights to three factors: step count, duration, and yield. The
weights for these factors were set as 0.1, 0.3, and 0.6, respec-
tively, in (Fig.3(E1)). “I am willing to accept long duration if
it means achieving higher yields as often the significance in

designing new synthetic route is the maximization of yield.”
After observing the difference between the starting and target
molecules, he found that the first step should be an amidation
reaction based on his prior knowledge. Then, he inputted the
name of the expected reaction in the Control Panel (Fig.3(A1)).

Combining deep and bread exploration strategies (R3).
SynthLens automatically retrieved papers related to the starting
molecule and presented them in the Paper Projection View
(Fig.3(B)). E4 noted a point surrounded by a relatively long
arc, indicating a high citation. He checked the topic of this
paper and found that this paper was about generating novel
linkers for Adcetris. Therefore, he determined this paper for
further exploration. Once clicking the corresponding point in
the view, SynthLens automatically extracted several synthetic
reaction information according to the inputted expected reac-
tion whose reactant is the starting molecule, as (Fig.3(C1))
shows. Adopting the bread exploration strategy, he integrated
the identified candidate synthetic reactions into the Synthetic
Route Overview (Fig.3(D)) following the root node. Subse-
quently, he wanted to explore if there were more candidates for
the first step. Therefore, he began to explore two other papers.
Then, E4 chose the most satisfied reaction Reaction 16 by
checking the weighted score of these candidates in the Rank
View to complete the decision sequence until the synthetic
route reached the target molecule, i.e., S1. E4 indicated,
“We need to construct a decision sequence from the starting
molecule to the target molecule to ensure that this synthetic
route is chemically feasible before subsequent full-scale ex-
ploration.” Once the synthetic route exists in principle, he can
construct multiple decision sequences for comparison. It is
worth noting that the product of different decision sequences
may not be the same but may be structurally similar, and he
can still compare these decision sequences.

Choosing intermediate reactions for another exploration
(R5). The first route S1 he completed had great difficulty in
the experimental procedure, all of the experimental procedures
in this route are difficult in experimental operations, so he
decided to choose an intermediate synthetic reaction to explore
other decision sequences. First, he chose an intermediate
reaction Reaction 27 and constructed a decision sequence
S2. Although S2 is not as difficult as S1 in experimental
procedures, it has a significantly lower yield than S1. After
checking the Molecule Similarity Mark in the (Fig.3(D2)) and
examining the Rank View, E4 noted that Reaction 12 not only
boasted a high weighted score but also had a product structure
that is structurally similar to the product of Reaction 16. This
observation led him to construct a new decision sequence,
ultimately choosing Reaction 12 for further exploration. He
started with Reaction 12 and constructed decision sequences
such as those shown in (Fig.3(D3)).

Decision making (R4). After completing the construction
of decision sequences, E4 compared the structural similarity
of Reaction 61, 62, 63, 55, and 56 in the Molecule Similarity
View (Fig.3(F2)) and found that the product of these reactions
had the same main chain and only differed in side chains.
E4 indicated that when the product molecules of different
sequences share structural similarities, they desire to compare
these sequences and choose the optimal one. In such cases,
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Fig. 7. Design a synthetic route of a class of molecules in Case Study 2. (A) presents several synthetic reactions integrated in Step3. (B) shows two of the
target molecules. (C) refers to a class of molecules containing double sulfur bonds (-S-S-). (D) and (F) presents decision routes with relatively high weighted
scores. (E) presents molecules with similar structures as the reactants of the synthetic reactions in Step 4. (G) details several experimental procedures of
certain synthetic reactions, which have difficulty in experimental operations.

he only needed to make minor adjustments to the chosen con-
structed route to adapt it for synthesizing the target molecule.
Consequently, he decided to rank the synthetic route by
checking the Rank View (Fig.3(F2)) and taking the difficulty
of the experimental procedure into account. He thought that
although S1 had a higher weighted score in the Rank View,
the experimental procedure of this route was more difficult.
So he chose S3. “Although S3 did not have the highest total
score, its experimental procedures are relatively moderate in
difficulty. This indicates that we can try hands-on in the real
experiment.”

In this case, E4 explored SynthLens using flexible strate-
gies, balancing various factors to guide decision-making, and
constructing decision sequences in about 50 minutes, which
results in the choice of a practical and promising synthetic
route for a novel molecule.

B. Case Study 2: Synthesis of A Class of Molecules

Purine is a type of organic molecule that is found in nucleic
acids and plays important roles in the human body, especially
in fighting against viruses and bacteria. E2 had designed
several new molecules based on purine, as (Fig.7(B)) shows, in
which R1 refers to any chains only with carbon and hydrogen
atoms. Since these molecules are newly designed, he needs to
refer to the synthetic route of similar molecules to design the
synthetic routes of these novel molecules. Based on the results
of his earlier experiments, E2 set guanosine as the starting

molecule. Considering the structural gap between the starting
molecule and the target molecule, the expert specified that
there would be four steps in this synthetic route.

Compare intermediate synthetic routes (R2, R4). After
completing the first two steps, E2 started to examine papers
to complete the third step of his construction process. He
found that the product of Reaction 21 could react with var-
ious molecules containing a disulfide bond (-S-S-)(Fig.7(C))
according to the extracted information of synthetic reactions
from papers. Based on his domain knowledge in chemistry,
E2 realized there are two possibilities for the main chain
of a molecule containing a disulfide bond: either the main
chain is straight (type1) or the main chain branches out into
branched chains (type2). As a result, he explored six different
papers in the Paper Projection View and the Synthetic Reaction
Detail to integrate the synthetic reactions with seven different
disulfide bond-containing reactants into the Synthetic Route
Overview (Fig.7(D)). Each of these reactions can produce
molecules that share a common main chain. He assessed these
intermediate synthetic routes considering yield and duration
in the Rank View and found that when the main chain of
the molecule containing the disulfide bond used in the third
step has a straight chain, the yield and reaction time are
superior to those of the molecule containing a branched chain
(Fig.7(A)). So, he chose Reaction 41, 42, and 43 to complete
the decision sequences. In the fourth step, he found that these
reactants could react with a variety of molecules that shared
similar structures (Fig.7(E)). As a result, the products of these
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reactions and the target molecules are similar in structure.
After having constructed the decision sequences, he checked
the Rank View and found the reactions in (Fig.7(F)) had the
highest scores.

Compare the Experimental Procedure (R2). Then, he
chose the last three nodes in the fifth step of the tree in
the Synthetic Route Overview to compare their experimental
procedures. He found that the experimental method of Reac-
tion 57 required the construction of a vacuum environment
during evaporation (Fig.7(G)), which was relatively difficult
to achieve. Therefore, he chose to refer to the experimental
procedures of Reaction 58 and 59.

The case demonstrates the importance of domain knowl-
edge in assessing the choices during the designing process.
Additionally, the case indicates that the users need to compare
textual data on several experimental procedures to ensure the
chosen reactions are practically feasible, particularly avoid-
ing complex operations. E2 successfully completed this case
within 35 minutes.

VIII. EVALUATION

A. Automatic Extraction Evaluation

We conducted an experiment to validate the accuracy of
the automatic extraction method of our system, introduced
in Section IV. We randomly collected 100 papers proposing
synthetic routes, published from 2023 to the present, from four
major chemical journals: The Journal of Organic Chemistry,
Organic Chemistry Frontiers, Organic Process Research &
Development, and European Journal of Organic Chemistry.
We invited four domain experts, each with over four years of
experience in organic chemistry, to annotate the papers. We
assigned 50 papers to each expert, ensuring each paper was
annotated by two experts. Experts were asked to annotate the
reactants, products, and yields of the synthetic routes. It is
worth mentioning that experts may give multiple annotations
to a paper if it proposes more than one synthetic route.
Then, we manually checked each annotation for conflicts.
When finding conflicts, we consulted the opinions of the
most experienced expert among those we invited to determine
the correct annotation. Next, we used the method in our
system to extract the synthesis routes from each paper. Using
the current standard evaluation metrics for NLP information
extraction tasks [38], we employed Precision, Recall, and F1
Score to evaluate the accuracy of our method in extracting
synthetic details from chemical papers. An extraction result
was considered a True Positive only if the reactants, products,
and yields were all correctly identified. Any extraction result
with at least one error was considered a False Positive, and
those missed in the extraction but present in the annotations
were considered False Negatives. The Precision was defined
as the True Positives out of all extracted details, indicating the
accuracy of the method. The Recall was defined as the ratio
of True Positives to the total number of actual annotations,
measuring the ability of the method to find information from
papers. The F1 Score was the harmonic mean of Precision
and Recall, which is a comprehensive assessment of method

performance. Additionally, we tested these metrics using com-
mon information extraction tools for chemical papers: Chem-
DataExtractor [43], ReactionDataExtractor [44], and Chem-
RxnExtractor [45]. Table I shows the performance comparison
among our system and common information extraction tools in
chemistry. The precision, recall and F1 scores of our method
are higher than those of the other methods.

TABLE I
COMPARISON OF OUR METHOD AND COMMON INFORMATION

EXTRACTION TOOLS IN EXTRACTING INFORMATION FROM CHEMISTRY
PAPERS

Precision Recall F1 Score
ChemicalDataExtractor [43] 0.871 0.527 0.653
ReactionDataExtractor [44] 0.722 0.436 0.544
ChemRxnExtractor [45] 0.942 0.627 0.753
Our System 0.944 0.798 0.865

B. User Study

To validate the efficacy of SynthLens, we conducted a
semi-structured interview with the previous experts (E1-E6)
mentioned in Section IV. Besides, we also involved four new
experts (P1-P4) in our evaluation, with more than four years
of experience in organic chemistry. Each interview lasted one
hour and a half. We first introduced the background of our
study (10 minutes). Then, we introduced our system in detail
(15 minutes). Next, experts could familiarize themselves with
the system through free exploration (15 minutes). Then, they
were asked to design a synthetic route using our system
according to their individual requirements (30 minutes). Fi-
nally, we had a semi-structured interview with them to collect
their feedback (20 minutes). After the interview, we asked
the participants to complete a questionnaire multiple choice
using a 5-point Likert scale to evaluate the effectiveness of
SynthLens in view representation, workflow enhancement, and
overall usability. We documented their findings and comments
on our system during the process.

Workflow and System Performance. All the experts in-
volved in the evaluation of SynthLens expressed their ap-
preciation for its workflow, as it aligned closely with their
prior analysis process in organic chemistry. P1 mentioned,
“The system can accelerate my design process significantly.
Specifically, it makes it possible for me to compare differ-
ent routes even if I have not completed them, resulting in
substantial time savings.” Specifically, we found that experts
usually prioritize exploring potential synthetic reactions as
much as possible in the early steps of their design process.
Then, they will identify the most promising one to conduct the
subsequent exploration to complete a synthetic route. E2 said
that our ranking view provided him with effective insights to
determine which one deserves further exploring. Furthermore,
P3 appreciated our system’s capability to support retrospective
exploration, recognizing that there might be several potential
synthetic reaction candidates in the earlier exploration steps
that could lead to improved synthetic routes. “After completing
a particular route, I often review previous steps to identify
any new possibilities. The system is particularly helpful in



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

quickly identifying these potential alternatives through molec-
ular similarity analysis.” Particularly, E5 praised the tree-
form visualization for exploration, and he mentioned that
this component is also suited for retrosynthetic tasks. “In
retrosynthesis, chemists employ a recursive approach, system-
atically working backwards from a target molecule to identify
feasible synthetic routes. I can also construct a retrosynthetic
route by inputting the target molecule through the tree-form
visualization of SynthLens.”

Visualization and Interaction. E1, E2, and P2 all men-
tioned that the Paper Projection View provides an intuitive
visualization of the distribution of retrieved papers, making
it easy to identify which papers need to be examined first.
Moreover, E3 and P1 also highlighted the usefulness of allow-
ing them to specify expected reactions and extract information
from the papers quickly. Additionally, P4 specifically pointed
out that the Synthetic Route View combined with tooltips
can effectively present the necessary information due to its
straightforward design. Finally, P3 and P4 pointed out the
benefits of combining point visualizations with bar charts in
the Rank View. They noted that this combination effectively
highlighted the most crucial information (i.e., the weighted
score displayed through the rightmost bar charts). In summary,
all the experts provided positive feedback on various aspects
of the system’s visualizations and interactions.

Suggestions. The experts expressed their willingness to use
the system but suggested some improvements. Specifically,
they noted that the system currently only retrieves academic
papers on chemical synthesis. Incorporating the ability to
search for patents of this domain would broaden the cov-
erage of synthesis information sources, thereby enhancing
the usability of SynthLens. P1 indicated that experts in the
field sometimes retrieve relevant papers by inputting multiple
molecules with similar structures. Therefore, P1 suggested that
SynthLens can recommend structurally similar molecules and
allow for the inclusion of more than one starting molecule.
This approach would enhance the informativeness of the
constructed synthetic routes. Moreover, P4 suggested that we
could take the price of raw material into account, which is also
important in deciding whether to integrate a synthetic reaction.

IX. DISCUSSION

Runtime Performance. SynthLens uses the PubMed API
for paper retrieval, followed by the conversion of the paper
content into high-dimensional embedding representations and
dimensionality reduction. This is followed by the information
extraction through LLM, which costs almost 1 minute or more
and contributes to the main time consumption of the analytic
process. However, SynthLens’ analysis process is designed
in parallel mode, allowing users to continue exploring other
papers while awaiting the results of the current analysis, thus
ensuring the continuity and efficiency of the research process.
Notably, SynthLens markedly reduces the time consumption
and preserves the essential element of manual decision-making
in comparison to traditional expert-driven approaches, where
the expert manually searches, filters and extracts information
from papers, subsequently constructing synthetic routes.

Fig. 8. Questionnaire results. We designed our questionnaire in three aspects:
the system’s view, workflow, and usability. Experts are asked to rate by a 5-
point Likert scale (from strongly disagree to strongly agree).

Design Implications. In our interviews, experts indicated
that they can adopt the proposed workflow for designing
synthetic routes in practice, treating the process as constructing
a tree structure where a node represents a synthetic reaction,
and the path from root to leaf defines the synthesis route,
with attributes like cumulative yield and synthesis time to help
identify the optimal route. Moreover, we observed that experts
frequently review intermediate nodes to explore promising
synthetic route completions. To facilitate this, SynthLens in-
cludes the Molecule Similarity View, allowing users to select
any node and automatically receive alternative possibilities
of structure-similar molecules. Additionally, users’ feedback
indicates that our workflow is suitable for retrosynthetic tasks,
where chemists deconstruct a target molecule to find feasible
synthetic routes [3]. Our system may also apply to vari-
ous multi-criteria decision-making scenarios, such as fisheries
management [47], architecture construction [48], and clinical
decision-making [49]. For instance, in highway route selection,
involving multiple objectives like safety, cost etc., our tree-
form visualization can help decision-makers compare and rank
construction segment plans [50].

Scalability. SynthLens provides a tree-form visualization to
assist experts in constructing and exploring synthetic routes.
Although the constructed routes can usually be fully displayed
within the current interface size, exploring the entire routes
becomes challenging when the node number increases. To
address this, our system supports zooming in and out to
facilitate exploration, with corresponding adjustments in the
size of the items in the Molecule Similarity View and the
Rank View. Additionally, we provide a sorting feature that
ranks various paths, making it easier for users to select the
optimal synthetic route. In the future, we plan to enhance the
Synthetic Route Construction View with an overview feature
that presents a summary of the tree-form visualization, which
will facilitate navigation through complex options even when
dealing with a large number of nodes.

Limitations and Future Work. There are several areas that
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can be addressed to enhance SynthLens further. Firstly, our
system supports experts in specifying one currently starting
molecule. However, expanding the capability to support mul-
tiple starting molecules would give experts more flexibility.
Additionally, we can also recommend relevant papers about
molecules similar to the current key molecule. This feature
is valuable because molecules with similar structures, even
if they differ slightly (such as in side chains), may share
similar reaction conditions or types. By including these related
molecules, the system can help users explore a wider range
of relevant synthesis routes. Finally, incorporating additional
information from papers, such as spectrograms and vali-
dation methods, would enrich the decision-making context
for experts. Our main contribution is the proposed analytics
analytic pipeline, which allows integration of advanced tools
in place of Eunomia, making it both adaptable and scalable to
accommodate future advancements.

X. CONCLUSION

We introduce SynthLens, a visual analytics system designed
to assist organic chemists in designing synthetic routes by
choosing optimal options at each step. The novel tree-form
visualization of SynthLens simplifies understanding of decision
sequences and helps optimal routes with the Rank View. The
collaboration with domain experts helps us to establish design
requirements and obtain valuable user feedback to refine
SynthLens. Two case studies demonstrate the practical benefits
and effectiveness of SynthLens in practical applications. We
also envision expanding the application of SynthLens to other
decision-making scenarios in chemistry fields and scientific
researches.
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